侧边栏壁纸
  • 累计撰写 793 篇文章
  • 累计创建 1 个标签
  • 累计收到 1 条评论
标签搜索

目 录CONTENT

文章目录

GLSL

Dettan
2021-04-10 / 0 评论 / 0 点赞 / 148 阅读 / 3,319 字
温馨提示:
本文最后更新于 2022-07-23,若内容或图片失效,请留言反馈。部分素材来自网络,若不小心影响到您的利益,请联系我们删除。
#version version_number

in type in_variable_name;
in type in_variable_name;

out type out_variable_name;

uniform type uniform_name;

int main()
{
  // 处理输入并进行一些图形操作
  ...
  // 输出处理过的结果到输出变量
  out_variable_name = weird_stuff_we_processed;
}
命名规则
常量
OpenGL中的常量也采用GL_为前缀,并且使用下划线来分割单词,如GL_COLOR。这些常量的定义是通过#defines来定义的,它们基本上都可以在OpenGL的头文件glcorearb.h和glext.h中找到
数据类型
OpenGL中为函数定义了不同的数据类型,如GLfloat表示浮点型。
另外,由于OpenGL是C语言的库,没有重载,所以OpenGL中区分同名函数使用后缀的变化来标记,
例如
glUniform2f(),2f中的2表示两个参数,f表示参数类型为GLfloat类型,即glUniform2f()需要传入两个GLfloat类型的参数,
glUniform3fv()中v表示vector(向量)类型,即这个函数我们需要使用一个3维向量作为参数传入,这个三维向量的每个分量都是GLfloat类型,
注意,在OpenGL中,向量vector类型是使用一维数组来表示,所以glUniform3fv()的参数为一个含有3个GLfloat值的一维数组
函数
OpenGL中所有函数都以字符gl作为前缀,还有些以glfw、gl3w或glew为前缀的函数,来自于第三方库GLFW、GL3W、GLEW

向量
向量的重组
向量这一数据类型也允许一些有趣而灵活的分量选择方式,叫做重组(Swizzling)。重组允许这样的语法:
vec2 someVec;
vec4 differentVec = someVec.xyxx;
vec3 anotherVec = differentVec.zyw;
vec4 otherVec = someVec.xxxx + anotherVec.yxzy;
你可以使用上面4个字母任意组合来创建一个和原来向量一样长的(同类型)新向量,只要原来向量有那些分量即可;然而,你不允许在一个vec2向量中去获取.z元素。我们也可以把一个向量作为一个参数传给不同的向量构造函数,以减少需求参数的数量:
vec2 vect = vec2(0.5f, 0.7f);
vec4 result = vec4(vect, 0.0f, 0.0f);
vec4 otherResult = vec4(result.xyz, 1.0f);
向量是一种灵活的数据类型,我们可以把用在各种输入和输出上。学完教程你会看到很多新颖的管理向量的例子。


顶点着色器应该接收的是一种特殊形式的输入,否则就会效率低下。顶点着色器的输入特殊在,它从顶点数据中直接接收输入。为了定义顶点数据该如何管理,我们使用location这一元数据指定输入变量,这样我们才可以在CPU上配置顶点属性。我们已经在前面的教程看过这个了,layout (location = 0)。顶点着色器需要为它的输入提供一个额外的layout标识,这样我们才能把它链接到顶点数据。
Important
你也可以忽略layout (location = 0)标识符,通过在OpenGL代码中使用glGetAttribLocation查询属性位置值(Location),但是我更喜欢在着色器中设置它们,这样会更容易理解而且节省你(和OpenGL)的工作量。

缓冲对象

定义这样的顶点数据以后,我们会把它作为输入发送给图形渲染管线的第一个处理阶段:顶点着色器。它会在GPU上创建内存用于储存我们的顶点数据,还要配置OpenGL如何解释这些内存,并且指定其如何发送给显卡。顶点着色器接着会处理我们在内存中指定数量的顶点。
我们通过顶点缓冲对象(Vertex Buffer Objects, VBO)管理这个内存,它会在GPU内存(通常被称为显存)中储存大量顶点。使用这些缓冲对象的好处是我们可以一次性的发送一大批数据到显卡上,而不是每个顶点发送一次。从CPU把数据发送到显卡相对较慢,所以只要可能我们都要尝试尽量一次性发送尽可能多的数据。当数据发送至显卡的内存中后,顶点着色器几乎能立即访问顶点,这是个非常快的过程。
顶点缓冲对象是我们在OpenGL教程中第一个出现的OpenGL对象。就像OpenGL中的其它对象一样,这个缓冲有一个独一无二的ID,所以我们可以使用glGenBuffers函数和一个缓冲ID生成一个VBO对象
GLuint VBO;
glGenBuffers(1, &VBO);
OpenGL有很多缓冲对象类型,顶点缓冲对象的缓冲类型是GL_ARRAY_BUFFER。OpenGL允许我们同时绑定多个缓冲,只要它们是不同的缓冲类型。我们可以使用glBindBuffer函数把新创建的缓冲绑定到GL_ARRAY_BUFFER目标上:
glBindBuffer(GL_ARRAY_BUFFER, VBO);
从这一刻起,我们使用的任何(在GL_ARRAY_BUFFER目标上的)缓冲调用都会用来配置当前绑定的缓冲(VBO)。然后我们可以调用glBufferData函数,它会把之前定义的顶点数据复制到缓冲的内存中:
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
glBufferData是一个专门用来把用户定义的数据复制到当前绑定缓冲的函数。
第一个参数是目标缓冲的类型:顶点缓冲对象当前绑定到GL_ARRAY_BUFFER目标上。
第二个参数指定传输数据的大小(以字节为单位);用一个简单的sizeof计算出顶点数据大小就行。
第三个参数是我们希望发送的实际数据。
第四个参数指定了我们希望显卡如何管理给定的数据。它有三种形式:
GL_STATIC_DRAW :数据不会或几乎不会改变。
GL_DYNAMIC_DRAW:数据会被改变很多。
GL_STREAM_DRAW :数据每次绘制时都会改变。
三角形的位置数据不会改变,每次渲染调用时都保持原样,所以它的使用类型最好是GL_STATIC_DRAW。如果,比如说一个缓冲中的数据将频繁被改变,那么使用的类型就是GL_DYNAMIC_DRAW或GL_STREAM_DRAW,这样就能确保显卡把数据放在能够高速写入的内存部分。
现在我们已经把顶点数据储存在显卡的内存中,用VBO这个顶点缓冲对象管理。下面我们会创建一个顶点和片段着色器来真正处理这些数据。现在我们开始着手创建它们吧。


指定如何解析顶点数据
有了这些信息我们就可以使用glVertexAttribPointer函数告诉OpenGL该如何解析顶点数据(应用到逐个顶点属性上)了:
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(GLfloat), (GLvoid*)0);
glEnableVertexAttribArray(0);
glVertexAttribPointer函数的参数非常多,所以我会逐一介绍它们:
第一个参数指定我们要配置的顶点属性。还记得我们在顶点着色器中使用layout(location = 0)定义了顶点属性的位置值(Location)吗?它可以把顶点属性的位置值设置为0。因为我们希望把数据传递到这一个顶点属性中,所以这里我们传入0
第二个参数指定顶点属性的大小。顶点属性是一个vec3,它由3个值组成,所以大小是3。
第三个参数指定数据的类型,这里是GL_FLOAT(GLSL中vec*都是由浮点数值组成的)。
下个参数定义我们是否希望数据被标准化(Normalize)。如果我们设置为GL_TRUE,所有数据都会被映射到0(对于有符号型signed数据是-1)到1之间。我们把它设置为GL_FALSE。
第五个参数叫做步长(Stride),它告诉我们在连续的顶点属性组之间的间隔。由于下个组位置数据在3个GLfloat之后,我们把步长设置为3 * sizeof(GLfloat)。要注意的是由于我们知道这个数组是紧密排列的(在两个顶点属性之间没有空隙)我们也可以设置为0来让OpenGL决定具体步长是多少(只有当数值是紧密排列时才可用)。一旦我们有更多的顶点属性,我们就必须更小心地定义每个顶点属性之间的间隔,我们在后面会看到更多的例子(译注: 这个参数的意思简单说就是从这个属性第二次出现的地方到整个数组0位置之间有多少字节)。
最后一个参数的类型是GLvoid*,所以需要我们进行这个奇怪的强制类型转换。它表示位置数据在缓冲中起始位置的偏移量(Offset)。由于位置数据在数组的开头,所以这里是0。我们会在后面详细解释这个参数。

每个顶点属性从一个VBO管理的内存中获得它的数据,而具体是从哪个VBO(程序中可以有多个VBO)获取则是通过在调用glVetexAttribPointer时绑定到GL_ARRAY_BUFFER的VBO决定的。由于在调用glVetexAttribPointer之前绑定的是先前定义的VBO对象,顶点属性0现在会链接到它的顶点数据。
// 0. 复制顶点数组到缓冲中供OpenGL使用
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
// 1. 设置顶点属性指针
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(GLfloat), (GLvoid*)0);
glEnableVertexAttribArray(0);
// 2. 当我们渲染一个物体时要使用着色器程序
glUseProgram(shaderProgram);
// 3. 绘制物体
someOpenGLFunctionThatDrawsOurTriangle();




顶点数组对象
顶点数组对象(Vertex Array Object, VAO)可以像顶点缓冲对象那样被绑定,任何随后的顶点属性调用都会储存在这个VAO中。这样的好处就是,当配置顶点属性指针时,你只需要将那些调用执行一次,之后再绘制物体的时候只需要绑定相应的VAO就行了。这使在不同顶点数据和属性配置之间切换变得非常简单,只需要绑定不同的VAO就行了。刚刚设置的所有状态都将存储在VAO中
OpenGL的核心模式要求我们使用VAO,所以它知道该如何处理我们的顶点输入。如果我们绑定VAO失败,OpenGL会拒绝绘制任何东西。
一个顶点数组对象会储存以下这些内容:

glEnableVertexAttribArray和glDisableVertexAttribArray的调用。
通过glVertexAttribPointer设置的顶点属性配置。
通过glVertexAttribPointer调用进行的顶点缓冲对象与顶点属性链接。


创建一个VAO和创建一个VBO很类似:
GLuint VAO;
glGenVertexArrays(1, &VAO);
要想使用VAO,要做的只是使用glBindVertexArray绑定VAO。从绑定之后起,我们应该绑定和配置对应的VBO和属性指针,之后解绑VAO供之后使用。当我们打算绘制一个物体的时候,我们只要在绘制物体前简单地把VAO绑定到希望使用的设定上就行了。这段代码应该看起来像这样:
// ..:: 初始化代码(只运行一次 (除非你的物体频繁改变)) :: ..
// 1. 绑定VAO
glBindVertexArray(VAO);
    // 2. 把顶点数组复制到缓冲中供OpenGL使用
    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
    // 3. 设置顶点属性指针
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(GLfloat), (GLvoid*)0);
    glEnableVertexAttribArray(0);
//4. 解绑VAO
glBindVertexArray(0);

[...]

// ..:: 绘制代(游戏循环中) :: ..
// 5. 绘制物体
glUseProgram(shaderProgram);
glBindVertexArray(VAO);
someOpenGLFunctionThatDrawsOurTriangle();
glBindVertexArray(0);
通常情况下当我们配置好OpenGL对象以后要解绑它们,这样我们才不会在其它地方错误地配置它们。
就这么多了!前面做的一切都是等待这一刻,一个储存了我们顶点属性配置和应使用的VBO的顶点数组对象。一般当你打算绘制多个物体时,你首先要生成/配置所有的VAO(和必须的VBO及属性指针),然后储存它们供后面使用。当我们打算绘制物体的时候就拿出相应的VAO,绑定它,绘制完物体后,再解绑VAO。

0

评论区